Maximum Likelihood Parameter Estimation of Unbalanced Three-Phase Power Signals
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Parameter Estimation
The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...
متن کاملFrequency Estimation of Unbalanced Three-Phase Power System using a New LMS Algorithm
This paper presents a simple and easy implementable Least Mean Square (LMS) type approach for frequency estimation of three phase power system in an unbalanced condition. The proposed LMS type algorithm is based on a second order recursion for the complex voltage derived from Clarke's transformation which is proved in the paper. The proposed algorithm is real adaptive filter with real parameter...
متن کاملAccurate Parameter Estimation for Unbalanced Three-Phase System
Smart grid is an intelligent power generation and control console in modern electricity networks, where the unbalanced three-phase power system is the commonly used model. Here, parameter estimation for this system is addressed. After converting the three-phase waveforms into a pair of orthogonal signals via the α β-transformation, the nonlinear least squares (NLS) estimator is developed for ac...
متن کاملMaximum likelihood separation of phase modulated signals
In this paper we present a Newton scoring algorithm for the maximum likelihood separation and direction of arrival estimation of constant modulus signals, using a calibrated array. The main technical step is the inversion of the Fisher information matrix, and an analytic formula for the update step in the Newton method. We present the algorithm based on the derived update and discuss potential ...
متن کاملMaximum-Likelihood Circle-Parameter Estimation via Convolution
In this paper, we present an interpretation of the Maximum Likelihood Estimator (MLE) and the Delogne-Kåsa Estimator (DKE) for circle-parameter estimation via convolution. Under a certain model for theoretical images, this convolution is an exact description of the MLE. We use our convolution based MLE approach to find good starting estimates for the parameters of a circle, that is, the centre ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Instrumentation and Measurement
سال: 2018
ISSN: 0018-9456,1557-9662
DOI: 10.1109/tim.2017.2782980